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Satellite-derived remote-sensing reflectance can be used for mapping biogeochemically relevant variables,
such as the chlorophyll concentration and the Inherent Optical Properties (IOPs) of the water, at global scales
for use in climate-change studies. Prior to generating such products, suitable algorithms have to be selected
that are appropriate for the purpose. Algorithm selection needs to account for both qualitative and quantitative
requirements. In this paperwe develop anobjectivemethodologydesigned to rank the quantitative performance
of a suite of bio-optical models. The objective classification is applied using the NASA bio-Optical Marine Algo-
rithm Dataset (NOMAD). Using in situ Rrs as input to the models, the performance of eleven semi-analytical
models, as well as five empirical chlorophyll algorithms and an empirical diffuse attenuation coefficient algo-
rithm, is ranked for spectrally-resolved IOPs, chlorophyll concentration and the diffuse attenuation coefficient
at 489 nm. The sensitivity of the objective classification and the uncertainty in the ranking are tested using a
Monte-Carlo approach (bootstrapping). Results indicate that the performance of the semi-analytical models
varies depending on the product and wavelength of interest. For chlorophyll retrieval, empirical algorithms per-
form better than semi-analytical models, in general. The performance of these empirical models reflects either
their immunity to scale errors or instrument noise in Rrs data, or simply that the data used for model
parameterisation were not independent of NOMAD. Nonetheless, uncertainty in the classification suggests that
the performance of some semi-analytical algorithms at retrieving chlorophyll is comparable with the empirical
algorithms. For phytoplankton absorption at 443 nm, some semi-analytical models also performwith similar ac-
curacy to an empirical model. We discuss the potential biases, limitations and uncertainty in the approach, as
well as additional qualitative considerations for algorithm selection for climate-change studies. Our classification
has the potential to be routinely implemented, such that the performance of emerging algorithms can be com-
pared with existing algorithms as they become available. In the long-term, such an approach will further aid al-
gorithm development for ocean-colour studies.
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1. Introduction

Visible radiance received by satellite ocean-colour sensors over
oceanic regions is essentially influenced by two components: the
atmosphere and the ocean. Typically, the atmospheric component consti-
tutes more than 80% of the signal received by the sensor, and it needs to
be removed to isolate the signal from the ocean. The ocean-colour signal
may then be used to quantify optically-significant water-constituents
such as Coloured Dissolved Organic Matter (CDOM) and the abundance
of particulate matter, inclusive of phytoplankton, indexed through their
chlorophyll pigment concentration, and non-phytoplanktonic material
(e.g. detrital matter and inorganic matter).

Phytoplankton are a key component of the Earth System and are
recognised as an Essential Climate Variable in the implementation
plan of theGlobal Climate Observing System (GCOS, 2011). Phytoplank-
ton absorb light energy that is either dissipated as heat, directly
influencing the physical properties of the oceans, or used for photosyn-
thesis (primary production), by which light is converted into chemical
energy and carbon converted from inorganic to organic form. It is esti-
mated that phytoplankton fix approximately 50 Gt of carbon per year,
equivalent to net terrestrial primary production. Phytoplankton, togeth-
erwith physical processes, regulate the CO2 concentration of the surface
ocean and the rate of CO2 exchanges between the atmosphere and
ocean. They are at the base of the food web, providing sustenance for
all pelagic marine life, and contribute to the biogeochemical cycling of
a variety of climatically-relevant elements, such as silica, nitrate and
phosphate, in addition to carbon. Monitoring the variability in phyto-
plankton distribution is vital to understanding how the ocean ecosys-
tem is likely to respond to future changes in climate.

The concentration of CDOM, its photo-degradation status and the
concentration of detrital matter present in the water, have a significant
effect on phytoplankton photosynthesis, through their absorption of
light at blue wavelengths of the visible spectrum, which corresponds
to the main phytoplankton absorption peak. CDOM can also affect the
transport and bio-availability of trace metals (Guo, Hunt, & Santschi,
2001; Santschi, Lenhart, & Honeyman, 1997), with possible implications
for biological activity, and plays an important role in photochemistry
and photobiology, with implications for ocean-climate connections
(Nelson & Siegel, 2013). The presence of highly-scattering non-
phytoplanktonic particulate material (e.g. detrital matter and inorganic
matter) alters the spectral quality of the underwater light field and thus
influences phytoplankton photosynthesis. The concentration of particu-
late material in the water is also important in coastal regions and has
implications for coastal protection, shipping and recreational activities.
These are some of the reasons why the systematic monitoring of
ocean colour is considered a requirement for climate research by
GCOS (GCOS, 2011) and why it is a component of the Climate Change
Initiative (CCI) of the European Space Agency (ESA).

The CCI programme was launched to realise the full potential
of long-term, global, Earth Observation archives that ESA as well as
its member states have established over the past 30-years, and to
contribute to the Essential Climate Variable databases required by the
United Nations Framework Convention on Climate Change (UNFCCC).
The Ocean Colour CCI (OC-CCI) project is one of 14 ESA funded CCI
projects. The aims of OC-CCI are to create a long-term, consistent,
error-characterised time series of ocean-colour products, for use in
climate-change studies. A key component of the programme is the
selection of suitable algorithms that meet user requirements and pro-
ject aims. The selection of algorithms for the OC-CCI project can be
partitioned into two: (i) selection of algorithms that correct for
atmospheric effects; and (ii) algorithms that convert the retrieved
ocean-colour signal into biogeochemically relevant variables, hereafter
referred to as atmospheric-correction and in-water algorithms respec-
tively. This paper focuses on the development of an objectivemethodol-
ogy designed to aid the selection of appropriate in-water algorithms for
climate studies. For information regarding the selection of atmospheric-
Please cite this article as: Brewin, R.J.W., et al., The Ocean Colour Climate C
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correction algorithms the reader is referred to Müller et al. (submitted
for publication) in this issue.

Since the establishment of ocean-colour remote sensing from space,
with the launch of the Coastal Zone Color Scanner (CZCS) of NASA on
board the Nimbus-7 satellite in 1978, blue-to-green ratios of water-
reflectance have been used in empirical relationships to derive the
total concentration of chlorophyll-a (C), a ubiquitous pigment present
in phytoplankton. With the launch of the Sea-viewing Wide Field-of-
view Sensor (SeaWiFS), the NASA successor to CZCS, NASA organised
the SeaWiFS Bio-optical Algorithm Mini-workshop (SeaBAM; O'Reilly
et al., 1998), designed to identify chlorophyll algorithms suitable for
operational use for processing SeaWiFS data. A database was developed
with simultaneous measurements of in situ chlorophyll and in situ
measurements of remote-sensing reflectance just above the surface
(Rrs(λ)). Based on the results from the workshop, an empirical blue-
green band-ratio algorithm, labelled the Ocean-Chlorophyll-2 (OC2) al-
gorithm, was chosen as the operational algorithm for SeaWiFS. This was
later updated to the Ocean-Chlorophyll-4 (OC4) algorithm (O'Reilly,
Maritorena, Siegel, & O'Brien, 2000).

In Case-1 waters (Morel & Prieur, 1977) typically encountered in the
open ocean, where variations in ocean colour are driven primarily by
the abundance of phytoplankton,with a co-varying influence frompartic-
ulatematter andCDOM, empirical blue-green band-ratio algorithmswere
generally found to perform with reasonable accuracy. However, in more
optically-complex waters (Case-2 waters according to Morel & Prieur,
1977) often encountered in coastal regions, where the concentrations of
particulate matter and CDOM do not co-vary in a predictable manner
with the abundance of phytoplankton, empirical blue-green band-ratio
algorithms can give spurious results (e.g. Lavender, Pinkerton, Morales,
Aiken, & Moore, 2004).

Theoretical approaches have demonstrated that Rrs(λ) is related to
the Inherent Optical Properties (IOPs) of seawater, the absorption and
backscattering coefficients. The absorption coefficient can in turn be
partitioned into the contributions from water itself, and the type and
abundance ofmaterial present in thewater, including phytoplankton, de-
trital matter and CDOM. The backscattering coefficient can be partitioned
into contributions from pure seawater and particulate matter suspended
in the water (which includes phytoplankton). IOPs can be used to infer
biogeochemical processes and to estimate the concentrations of various
optically-significant water constituents, such as chlorophyll. Theoretical
approaches that derive IOPs from Rrs(λ) may improve performance of
algorithms in more optically-complex waters (see IOCCG, 2000), and a
variety of semi-analytical approaches have been developed in this direc-
tion (see IOCCG, 2006).

Recently, NASA organised an international IOP algorithm work-
shop (Werdell, 2009) designed to provide datasets (Werdell &
Bailey, 2005) and processing a framework in an international
forum within which a new generation of global IOP products can be
developed and evaluated. The workshop aimed to: define the state
of the art with regard to the application of semi-analytical models
to satellite radiometry; identify similarities and differences between
approaches; identify strategies to provide uncertainties in IOPs; and
achieve community consensus toward the generation of global IOP
products (Werdell, 2009). An output of the workshop was the develop-
ment of a Generalized Inherent Optical Property model (GIOP), a test
platform for algorithm development that offers freedom to specify var-
ious optimisation approaches and parameterisations (Franz & Werdell,
2010; Werdell et al., 2013).

In contrast to the aims of the NASA GIOP workshop, but making use
of progressmade as a result of theworkshop, and building on the report
of the IOCCGworking group on the topic (IOCCG, 2006), this paper aims
to establish an objective methodology for algorithm selection for
climate-change studies, and then to use the method to compare and
rank a variety of algorithms. Both qualitative and quantitative consider-
ations are examined. Qualitative considerations relate to the suitability
of the algorithms for use in climate-change studies and the quantitative
hange Initiative: III. A round-robin comparison on in-water bio-optical
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considerations relate to algorithm performance. Qualitative algorithm
considerations include the ability of the algorithm to:

• Create a long-term, consistent, error-characterised time series of
ocean-colour products for use in climate-change studies;

• Generate products that best suit the requirements of the user
community;

• Facilitate seamless merging of Case-1 (open-ocean) and Case-2
(coastal optically-complex) waters;

• Quantify a variety of properties of the marine ecosystem that are
relevant to climate studies and accessible from satellite ocean-
colour data and;

• Be robust against potential modifications in the marine ecosystem
in a changing climate.

Ideally, the most suitable algorithm would meet all these require-
ments and compare well in statistical tests of performance. Using a
suite of statistical tests, and an in situ database of chlorophyll (C), the
diffuse attenuation coefficient at 489 nm (Kd(489)), IOPs and Rrs(λ),
we evaluate the quantitative performance of a number of empirical
and semi-analytical in-water bio-optical models. The limitations of the
approach are discussed and additional challenges regarding the selec-
tion of in-water algorithms for climate studies are highlighted.

2. Data

To test in-water bio-optical models, we made use of the publicly-
available NASA bio-Optical Marine Algorithm Dataset (NOMAD,
Werdell & Bailey, 2005). NOMAD Version 2.0 ALPHA was compiled
on 18 July 2008 by the NASA Ocean Biology Processing Group and source
data is available online (http://seabass.gsfc.nasa.gov/seabasscgi/nomad.
cgi), as is documentation related to IOPs (Werdell, 2005). The
NOMAD dataset provides global in situ measurements of above-
water spectral water-leaving radiance (Lw(λ)) and spectral surface
irradiance (ES(λ)), from which remote-sensing reflectance can be
computed (Rrs(λ) = Lw(λ) / ES(λ)), and coincident measurements
of water constituents such as the chlorophyll-a concentration, IOPs
and Kd(489) (diffuse attenuation coefficient at 489 nm). The solar-
zenith angle (θ) was computed for each data point using information
on time and location. Table 1 denotes the variables used in the
comparison.

The OC-CCI project currently focuses on the use of three ocean-colour
satellite platforms: the Medium Resolution Imaging Spectrometer
(MERIS) of ESA; the Moderate Resolution Imaging Spectro-radiometer
(MODIS) of NASA; and the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) of NASA, to create a time-series of satellite data. Therefore,
Table 1
Variables tested in the in-water comparison.

Abbreviation Variable

Lw(λ) Spectral water-leaving radiance
ES(λ) Spectral surface irradiance
Rrs(λ) Remote sensing reflectance (Lw(λ) / ES(λ))
θ Solar-zenith angle
C HPLC chlorophyll-a concentration
Kd(489) Diffuse downwelling irradiance coefficient at 489 nm
a(λ) Total absorption coefficient
aph(λ) Phytoplankton absorption coefficient
adg(λ) Dissolved (gelbstoff) and detrital (non-algal) absorp
Sdg Exponential slope of adg with wavelengthb

aph(555)/aph(443) Index of spectral shape in aph
bb(λ) Total backscattering coefficient
γ Power slope of bb with wavelengthc

λ = wavelength.
a Solar-zenith angle was used as input to some of the semi-analytical models and for estima
b Computed from fitting an exponential function to in situ data and model.
c Computed from fitting a power function to in situ data and model.

Please cite this article as: Brewin, R.J.W., et al., The Ocean Colour Climate C
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to be representative of the majority of wavelengths in all three satellite
sensors, a common band set of 411, 443, 489, 510, 555, and 665 nm
was chosen to maximise the amount of validation data points in
NOMAD. Though there are some mis-matches (MERIS native 560 N

555 nm; MODIS native 547 b 555 nm and 531 nm excluded; and
SeaWiFS 670 N 665 nm), this compromise was adopted to maximise
the number of samples. The common band set used included six
bands compatible with MERIS and SeaWiFS and five bands compatible
with MODIS. Co-located in situ measurements of Rrs(λ) were used as
input to the models, as opposed to satellite-derived Rrs(λ), to minimise
mis-matches in spatial scales between input and output variables.

To maximise the number of bb(λ) samples, 670 nm was used
where reflectance data at 665 nm were unavailable. Note that
bb(λ), and the slope of bb(λ), denoted as γ (Table 1), were used in
this comparison as opposed to partitioning bb(λ) into the contribu-
tion from pure water (bbw) and particles (bbp), to avoid issues caused
by different bbw spectra in different semi-analytical models. Remote
sensing reflectance data, at various wavelengths, and solar-zenith
angles were used as input to in-water algorithms to estimate IOPs,
C and Kd(489) (Tables 1, 2 and 3). Estimated variables using the
models were then compared with in situ values in NOMAD, to deter-
mine the performance of the algorithms. Fig. 1 shows the spatial cov-
erage and number of samples for each variable used in the in situ
database and the NOMAD record identifier for each measurement
used in the comparison is provided as Supplementary data.

3. Models

The following sections describe the semi-analytical models, designed
to retrieve IOPs, and the chlorophyll models and the diffuse attenuation
coefficient (Kd) models incorporated into the comparison. Tables 2 and
3 also provide a description of the output variables of each model and a
summary listing key attributes of the various algorithms.

3.1. Semi-analytical models

Semi-analytical models used in the comparison are described in
this section. The term ‘semi-analytical models’ will be conventionally
employed hereafter to describe Models A–K for the sake of brevity.
However, we acknowledge that some of the models vary in their use
of analytical and empirical solutions to solve for the IOPs. These semi-
analytical models (A–K) are used to compute the total absorption coef-
ficient (a), combined absorption by detritus and coloured dissolved
organic matter or gelbstoff (adg), absorption by phytoplankton (aph),
total back-scattering coefficient (bb), the spectral slope of the total
Usage Unit

Input μW cm−2 nm−1 sr−1

Input μW cm−2 nm−1

Input sr−1

Inputa Degrees
Output mg m−3

Output m−1

Output m−1

Output m−1

tion coefficient Output m−1

Output nm−1

Output Dimensionless
Output m−1

Output Dimensionless

ting Kd(489) (see Eq. (6)).

hange Initiative: III. A round-robin comparison on in-water bio-optical
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Table 2
Model output variables.

Model Output variable Reference

Kd(489) C a(λ) aph(λ) adg(λ) bb(λ) γ Sdg aph(555)/aph(443)

A ×a ×b × × × × × × × Smyth, Moore, Hirata, and Aiken (2006)
B ×a ×b × × × × × × × Smyth et al. (2006)
C ×a × × × × × × × × Devred, Sathyendranath, Stuart, and Platt (2011)
D ×a ×b × × × × × × × Lee, Carder, and Arnone (2002)
E ×a ×b × × × × × × × Lee, Lubac, Werdell, and Arnone (2009)
F ×a ×b × × × × × × × Lee, Carder, Mobley, Steward, and Patch (1998, 1999)
G ×a × × × × × × × × Maritorena, Siegel, and Peterson (2002)
H ×a × × × × × × × × Maritorena et al. (2002)
I ×a × × × × × × × × Werdell et al. (2013)
J ×a × × × × × × × seec

K ×a × × × × × × × × Doerffer and Schiller (2000)
L × O'Reilly et al. (2000)
M × O'Reilly et al. (2000)
N × O'Reilly et al. (2000)
O × Morel et al. (2007)
P × Hu, Lee, and Franz (2012)
Q × NASA (2009)

a Computed following Eq. (6) with θ, a(489) and bb(489) as input from the model.
b Computed following Eq. (1) with aph(443) as input from the model.
c This model represents a Case-1 approach that usesModel L as input. The model computes IOPs as a function of C through combining relationships proposed by: Gordon et al. (1983),

Buiteveld, Hakvoort, and Donze (1994), Pope and Fry (1997), Huot,Morel, Twardowski, Stramski, and Reynolds (2008),Morel (2009); Bricaud, Babin, Claustre, Ras, and Tiéche (2010), and
Brewin, Devred, Sathyendranath, Hardman-Mountford, and Lavender (2011).
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backscattering coefficient (γ), the spectral slope of adg, denoted Sdg, and
the ratio of phytoplankton absorption at 555 nm to that at 443 nm
(aph(555)/aph(443)) (see Table 1 for all notations used). The ratio
aph(555)/aph(443) was used in this comparison as an index of the
spectral shape of the phytoplankton absorption coefficient, an index
of the community structure of the phytoplankton (Ciotti, Lewis, &
Cullen, 2002; Sathyendranath, Stuart, Cota, Maas, & Platt, 2001;
Sathyendranath et al., 2004). The ratio of 555 nmto443 nmwas chosen
as these wavelengths typically represent the minimum and maximum
of the phytoplankton absorption spectra. However, we acknowledge
that ratios of other wavelengths could have also been used.

3.1.1. Model A
Model A refers to the model of Smyth, Moore, Hirata and Aiken

(2006). It uses an algebraic approach for determining IOPs. The model
Table 3
Summary of models used in the comparison.

Model Approach Method

A Semi-analytical Algebraic
B Semi-analytical Algebraic
C Semi-analytical Optimisation
D Semi-analytical Algebraic
E Semi-analytical Algebraic
F Semi-analytical Optimisation
G Semi-analytical Optimisation
H Semi-analytical Optimisation
I Semi-analytical Optimisation
J Semi-analytical Band-ratio
K Semi-analytical Optimisation
L Empirical Band-ratio
M Empirical Band-ratio
N Empirical Band-ratio
O Empirical Band-ratio
P Empirical Band-ratio/CIc

Q Empirical Band-ratio

a Wavelengths used that are available in the comparison.
b Qualitative assessment of algorithm independence to NOMAD: 1 = NOMAD dataset has a

model parameterisation; 3 = NOMAD dataset has a large influence on model parameterisatio
c CI refers to a colour index defined as the difference between Rrs in the green region of the vis

visible spectrum.

Please cite this article as: Brewin, R.J.W., et al., The Ocean Colour Climate C
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uses spectral slopes for a–aw (where subscript w stands for water) and
bbp (total particulate backscattering) derived from field measurements,
at the centralwavelengths of 490 and 510 nm (or 531 forMODIS). Once
the absorption and backscattering coefficients are known at these
wavelengths, based on Morel (1980), and assuming a fixed spectral
slope for bbp, the absorption and backscattering coefficients across the
spectrum can be determined. Once absorption and backscattering are
determined spectrally, adg and aph can be determined using standard
relationships and slopes between the wavelengths of 412 and 443 nm.

3.1.2. Model B
Model B refers to themodel of Smyth et al. (2006), as inModel A, but

applying a new optical water classification, whereby the model param-
eters (spectral slopes in a-aw, bbp, adg and aph) were computed for eight
optical classes (see Moore, Campbell, & Dowell, 2009). Based on the
Input Rrs wavelengthsa NOMAD Independenceb

411, 443, 489, 510, 555, 665 1
411, 443, 489, 510, 555, 665 2
443, 489, 510, 555 2
411, 443, 489, 510, 555, 665 1
411, 443, 489, 510, 555, 665 2
411, 443, 489, 510, 555, 665 1
411, 443, 489, 510, 555, 665 1
411, 443, 489, 510, 555, 665 1
411, 443, 489, 510, 555, 665 1
443, 489, 510, 555 2
411, 443, 489, 510, 555, 665 1
443, 489, 510, 555 3
443, 489, 555 3
489, 555 3
443, 489, 510, 555 1
443, 489, 510, 555, 665 3
489, 555 3

small influence on model parameterisation; 2 = NOMAD dataset has some influence on
n.
ible spectrum and a reference formed linearly between Rrs in the blue and red region of the
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Fig. 1. NOMAD in situ data used in the study (N = number of samples).
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fuzzy-class-membership for each sample, determined from Rrs, the
spectral slopes are re-computed and implemented in the model of
Smyth et al. (2006).

3.1.3. Model C
Model C refers to the ocean-colour model of Devred, Sathyendranath,

Stuart and Platt (2011)with some simplifications. Thismodel is designed
toderive in-water optical properties andwater constituents fromspectral
water-leaving radiances, using non-linear optimisation procedures.
The method makes use of a three-component model of phytoplankton
absorption coupled to the reflectance model of Sathyendranath
and Platt (1997). The model retrieves bbp(555) (assuming the slope of
bbp = 1.03 following Maritorena, Siegel and Peterson (2002)), adg(443)
and Sdg from Rrs, initially assuming that aph can be expressed as the sum
of the absorption coefficient of three phytoplankton size classes (pico-,
nano- andmicro-phytoplankton), eachwith its particular specific absorp-
tion spectrum (aph∗ , phytoplankton absorption normalised by chlorophyll
concentration) derived from the NOMADdataset.Wavelengths from 443
to 555 nmwere used in the inversion of Model C. Output variables were
constrained to lie within the following range: 0.0 b aph b 100 m−1;
0.0 b adg b 100 m−1; and 0.0 b bbp b 5.0 m−1.

3.1.4. Model D
Model D refers to the algebraic Quasi-Analytical Algorithm (QAA) of

Lee, Carder and Arnone (2002). The model was designed to retrieve
IOPs in optically-deep waters. The model inversion is based on two
steps: the first involves partitioning water reflectance into bb and a
and the second decomposing a into adg and aph. The model is referred
to as “Quasi-Analytical” as parts of the inversion are based on analytical,
semi-analytical and empirical approximations. Model D uses the origi-
nal parameterisation as described in Lee et al. (2002).

3.1.5. Model E
Model E refers to the Quasi-Analytical Algorithm (QAA) of Lee et al.

(2002), as in Model D, but following an updated parameterisation
(see Lee et al., 2009). This includes the use of measured Rrs(670) in
the calculation of a(555), in contrast to Model D which instead uses
Rrs(640) in the calculation of a(555), estimated empirically from other
wavelengths when using data from SeaWiFS, MODIS, or MERIS.

3.1.6. Model F
Model F refers to the physics-based Hyperspectral Optimization

Process Exemplar (HOPE) model of Lee, Carder, Mobley, Steward and
Patch (1998, 1999). In this model Rrs is modelled as a function of IOPs,
and when influencing the Rrs signal, bottom depth and bottom albedo.
Unknowns are derived from non-linear optimisation. The spectral shape
of bottom albedo is pre-determined before the optimisation starts,
with the choice of two shapes (one for sand, another for grass)
Please cite this article as: Brewin, R.J.W., et al., The Ocean Colour Climate C
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automatically selected using the Rrs spectrum. The phytoplankton ab-
sorption coefficients were constrained to lie within an upper and
lower boundary (e.g. 0.002 b aph(443) b 1.0 m−1).

3.1.7. Model G
Model G refers to the semi-analytical Garver–Siegel–Maritorena

(GSM) model that was initially developed by Garver and Siegel (1997)
and later updated byMaritorena et al. (2002). The GSMmodel retrieves
simultaneous estimates of chlorophyll (C), adg(443) and bbp(443) from
Rrs(λ), assuming an underlying bio-optical model and using non-linear
optimisation. Global parameters of the bio-optical model were initially
assigned based on simulated annealing on a global quasi-real dataset,
which are then used in the non-linear optimisation routine. These
include a fixed chlorophyll-specific phytoplankton absorption coeffi-
cient (aph∗ ), Sdg and the slope of bbp. The chlorophyll (C), adg(443) and
bbp(443) are first retrieved by fitting the bio-optical model to the
observed Rrs(λ). IOPs at any wavelengths are then obtained using C,
adg(443) and bbp(443) and their specific shape function from the
bio-optical model. For Model G, the output variables are constrained
to lie within the range that was used to parameterise the model
(0.01 b C b 64 mg m−3; 0.0001 b adg(443) b 2.0 m−1; and 0.0001 b

bbp(443) b 0.1 m−1).

3.1.8. Model H
Model H refers to the semi-analytical Garver–Siegel–Maritorena

(GSM) model (Maritorena et al., 2002), as in Model G, but allowing
the retrievals to have any value, thus removing the constraint imposed
on Model G.

3.1.9. Model I
Model I refers to a preliminary configuration of the Generalized

Inherent Optical Property algorithm (GIOP; Franz & Werdell, 2010;
Werdell et al., 2013). The GIOP model is designed as a test platform
for algorithm development and was the result of a NASA IOP Algorithm
Workshop (see Werdell, 2009; Werdell et al., 2013). Whereas the GIOP
model offers the user freedom to specify different parameterisations
and optimisation approaches, a preliminary configuration for GIOP
is available which includes: an assigned aph

∗ following Bricaud, Babin,
Morel, and Claustre (1995) but normalised by 0.055 m−2 (mg C)−1; a
spectral backscattering dependency following the QAA; a fixed spectral
slope for adg(λ) of 0.018 nm−1; Morel, Antoine, and Gentili (2002) f/Q
ratio for zero Sun angle and zero view angle, where Q(λ) is the ratio of
upwelling irradiance to upwelling radiance and f(λ) captures the net ef-
fects of variation in sea state, illumination conditions, andwater column
content; and Levenberg–Marquardt optimisation. It is designed to re-
trieve spectral IOPs and chlorophyll, and it is worth noting that this pre-
liminary configuration could be changed with time. All IOPs (adg, aph,
bbp, and adg + aph) were constrained to lie within −0.005 and 5 m−1.
hange Initiative: III. A round-robin comparison on in-water bio-optical
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Retrievals were excluded if the reconstructed Rrs spectrum, between
411 and 555 nm, differed from the observed Rrs spectrum by more
than 33%.

3.1.10. Model J
Model J refers to a Case-1 model, in which all IOPs are modelled as

a function of the chlorophyll concentration (C) derived using the
NASA OC4v6 empirical model (Model L). Once C is estimated from
Rrs, C is used as input to estimate: aph(λ) using a three-component
model of phytoplankton absorption (Brewin, Devred, Sathyendranath,
Hardman-Mountford and Lavender, 2011); ag(λ) using a power-
function of C (Morel, 2009) with an exponential spectral slope (Sg) of
0.018 nm−1; ad(λ) using a power-function of C (Bricaud et al., 2010)
with an exponential spectral slope (Sd) of 0.0094 nm−1; bbp(λ) as a
function of C using the model of Huot et al. (2008); pure water absorp-
tion (aw) according to Pope and Fry (1997); and pure-water backscat-
tering (bbw) according to Buiteveld et al. (1994). Components of
absorption and backscattering are added to obtain the totals a and bb
respectively, from which Rrs is computed using the model of Gordon
et al. (1988).

3.1.11. Model K
Model K refers to a preliminary configuration of an in-water artificial

Neural-Network (NN) (e.g. Doerffer, Heymann, & Schiller, 2002;
Doerffer & Schiller, 2000, 2006) which is used as the forward model
within an optimisation procedure (Levenberg–Marquardt). The model
computes IOPs from water-leaving radiance for all available multi-
spectral ocean-colour sensors as well as in situ measurements. The
method was optimised to invert water-leaving radiance directly into
spectral IOPs, with chlorophyll (C) parameterised as a function of phyto-
plankton absorption and Kd(489) as a function of scattering and total
absorption.

3.2. Chlorophyll (C) models

Chlorophyll (C) algorithms incorporated into the comparison are
described in the following section. For semi-analytical Models C, G, H,
I, and K, chlorophyll is an output from the models. For semi-analytical
Models A, B, D, E, and F, chlorophyll is not an output. For the purposes
of the comparison, we estimated chlorophyll as a function of aph(443)
using a power–law relationship (e.g. Bricaud et al., 1995), such that

C ¼ aph 443ð Þ
A

� �1
B
; ð1Þ

where, A and B are positive empirical parameters. The empirical param-
eters A and B were computed using the in situ NOMAD dataset (1042
samples), and set to A = 0.0497 and B = 0.7575. For semi-analytical
Models A, B, D, E, and F, aph(443) was first computed, then chlorophyll
was computed using Eq. (1). It is worth noting that the empirical con-
version from aph(443) to chlorophyll is merely introduced to facilitate
the comparison, it is not a feature of the original algorithms. Note that
Model J is not incorporated in the chlorophyll comparison as this
model uses chlorophyll estimated from an empirical model (Model L)
as input to compute IOPs. In addition to the semi-analytical models
(A–I and K), a variety of empirical chlorophyll algorithms were also in-
corporated into the comparison and are described below.

3.2.1. Model L
Model L refers to the NASA OC4 chlorophyll algorithm (O'Reilly

et al., 2000). This is a polynomial algorithm that relates the log-
transformed ratio of remote-sensing reflectances (X) to the chlorophyll
concentration (C). The OC4v6 uses a four-band blue-green reflectance
ratio such that:

X ¼ log10 Rrs 443ð ÞNRrs 489ð ÞNRrs 510ð Þ½ �=Rrs 555ð Þf g: ð2Þ
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Chlorophyll (C) is estimated according to:

C ¼ 10 a0þa1Xþa2X
2þa3X

3þa4X
4ð Þ; ð3Þ

where, a0 = 0.3272, a1 = −2.9940, a2 = 2.7218, a3 = −1.2259 and
a4 = −0.5683 (NASA, 2010).

3.2.2. Model M
Model M refers to the NASA OC3S chlorophyll algorithm (O'Reilly

et al., 2000). Like the OC4, this is a polynomial algorithm that relates
the log-transformed ratio of remote-sensing reflectances (X) to C. The
OC3S uses a three-band blue-green reflectance ratio where

X ¼ log10 Rrs 443ð ÞNRrs 489ð Þ½ �=Rrs 555ð Þf g; ð4Þ

and C is estimated according to Eq. (3) where, a0 = 0.2515,
a1 = −2.3798, a2 = 1.5823, a3 = −0.6372 and a4 = −0.5692
(NASA, 2010).

3.2.3. Model N
Model N refers to the NASA OC2S chlorophyll algorithm (O'Reilly

et al., 2000). Like the OC4 and OC3S, this is a polynomial algorithm
that relates the log-transformed ratio of remote-sensing reflectances
(X) to C. The OC2S uses a two-band blue-green reflectance ratio where

X ¼ log10 Rrs 489ð Þ=Rrs 555ð Þ½ �; ð5Þ

and C is estimated according to Eq. (3) where, a0 = 0.2511,
a1 = −2.0853, a2 = 1.5035, a3 = −3.1747 and a4 = 0.3383
(NASA, 2010).

3.2.4. Model O
Model O refers to the MERIS chlorophyll band-ratio algorithm

(Morel & Antoine, 2011). Like the OC4, it is a four-band polynomial
algorithm that relates the log-transformed ratio of remote-sensing
reflectance (X) to C. Considering that a common-band set was cho-
sen, not inclusive of 560 nm, the algorithm was implemented fol-
lowing Morel et al. (2007), such that the wavelength of 560 nm
was replaced by 555 nm, and X can be estimated following Eq. (2)
and (3), where a0 = 0.4461529, a1 = −3.291807, a2 = 3.777216,
a3 = −4.172339 and a4 = 1.415588 (see Table 2 OC4Me555 of
Morel et al., 2007).

3.2.5. Model P
Model P refers to the chlorophyll algorithm of Hu et al. (2012). This

empirical algorithmwas designed to improve the estimate of chlorophyll
in the global ocean at concentrations≤0.25 mg m−3. For lowchlorophyll
concentrations (≤0.25 mg m−3), the algorithm uses a colour index (CI),
which is defined as the difference between Rrs in the green region of the
visible spectrum and a reference formed linearly between Rrs in the blue
and red region of the visible spectrum. For high chlorophyll concentra-
tions (N0.3 mg m−3), Model P conforms to the OC4 algorithm
(Model L), and for concentrations between N0.25 and ≤0.3 mg m−3 a
mixture of the colour index (CI) and the OC4 algorithm (Model L) is
used, allowing a smooth transition from the CI to the OC4with increasing
chlorophyll.

3.3. Diffuse attenuation models (Kd)

Algorithms for computing the diffuse attenuation coefficient at
489 nm (Kd(489)) are described in the following section. For semi-
analytical Models A to J, Kd(489) was computed following Lee, Du,
and Arnone (2005), with a(489) and bb(489) computed according
hange Initiative: III. A round-robin comparison on in-water bio-optical
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to the particular model (A–J) and the solar-zenith angle (θ) as input,
such that:

Kd 489ð Þ ¼ 1þ 0:005θð Þ½ �a 489ð Þ
þ 4:18 1−0:52 exp −10:8a 489ð Þ½ �f gbb 489ð Þ: ð6Þ

For semi-analytical Model K, Kd(489) is an output, tied to scattering
and total absorption. In addition to Kd(489) estimates from semi-
analytical models, an empirical algorithm was also incorporated into
the comparison (Model Q).

3.3.1. Model Q
Model Q refers to the NASA empirical algorithm for derivingKd(489)

from SeaWiFS (KD2S). This is a polynomial algorithm that relates the
log-transformed ratio of remote-sensing reflectances (X) to Kd(489).
The algorithm uses a two-band blue-green reflectance ratio to compute
X (see Eq. (5)), and Kd(489) is computed following:

Kd 489ð Þ ¼ 10 a0þa1Xþa2X
2þa3X

3þa4X
4ð Þ þ 0:0166; ð7Þ

where, a0 = −0.8515, a1 = −1.8263, a2 = 1.8714, a3 = −2.4414
and a4 = −1.0690 (NASA, 2009).

4. Methods

4.1. Statistical tests

To test the performance of the in-water algorithms the following
univariate statistical tests were adopted that are commonly used in
comparisons between modelled and in situ data (e.g. Doney et al.,
2009; Friedrichs et al., 2009).

4.1.1. Pearson correlation coefficient (r)
The correlation coefficient r (also called Pearson's product moment

correlation) is calculated according to

r ¼ 1
N−1

XN
i¼1

XM
i − 1

N

XN
j¼1

XM
j

� �
1

N−1

XN
k¼1
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k −

1
N

XN
l¼1
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l

� �h i2� �1=2
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7775

�
XE
i − 1

N
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m¼1

XE
m

� �
1

N−1

XN
n¼1

XE
n−

1
N

XN
o¼1

XE
o

� �h i2� �1=2

2
6664

3
7775; ð8Þ

where, X is the variable andN is the number of samples. The superscript
E denotes the estimated variable (from the model) and the superscript
M denotes themeasured variable (fromNOMAD). Note that the Pearson
correlation coefficient assumes a linear relationship between variables
and normal distributions. The correlation coefficient may take any
value between −1.0 and 1.0.

4.1.2. Root Mean Square Error (Ψ)
The absolute Root Mean Square Error (Ψ) is calculated according to

Ψ ¼ 1
N

XN
i¼1

XE
i −XM

i

� �2" #1=2
: ð9Þ

4.1.3. The bias (δ)
The bias between model and measurement can be expressed

according to

δ ¼ 1
N

XN
i¼1

XE
i −XM

i

� �
: ð10Þ
Please cite this article as: Brewin, R.J.W., et al., The Ocean Colour Climate C
algorithms, Remote Sensing of Environment (2013), http://dx.doi.org/10.10
4.1.4. The centre-pattern Root Mean Square Error (Δ)
The absolute centre-pattern (or unbiased) Root Mean Square Error

(Δ) is calculated according to

Δ ¼ 1
N

XN
i¼1

XE
i −

1
N

XN
j¼1

XE
j
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: ð11Þ

It describes the error of the estimated values with respect to the
measured ones, regardless of the average bias between the two distri-
butions. It is related toΨ and δ according to Δ2 = Ψ2 − δ2.

4.1.5. Slope (S) and intercept (I) of a Type-2 regression
The performance of amodel with respect to in situ data can be tested

using linear regression between the estimated variable (from the
model) and the measured variable (in situ data), such that

XE ¼ XMSþ I: ð12Þ

A slope (S) close to one and an intercept (I) close to zero is an indi-
cation that the model compares well with the in situ data. Type-1 re-
gression typically assumes the dependent variable (in situ data) is
known infinitely well, when in reality, the in situ data are also affected
by uncertainties (e.g. problems with in situ data sampling techniques)
that are difficult to quantify. Therefore, we adopted Type-2 regression
(Glover, Jenkins, & Doney, 2011, MATLAB function lsqfitma.m), which
instead of minimising the vertical distance between independent data
and linear fit (as in Type-1 regression), minimises the perpendicular
distance between independent data and linear fit.

4.1.6. Percentage of possible retrievals (η)
Considering that algorithms chosen for climate studies should

perform routinely, and globally, and should not be a source of more
gaps in the data than would be the case if other algorithms were used,
the percentage of possible retrievals (η) is an important criterion that
should be considered in the comparison, calculated according to

η ¼ NE

NM 100; ð13Þ

where NE represents the number of retrievals using the model and NM

represents the number of in situ data points.
All statistical tests described above were performed in log10 space,

considering themajority of variables are approximately log-normally dis-
tributed, with the exception of Sdg, γ and aph(555)/aph(443) forwhich the
analysis was performed in linear space.

4.2. Quantitative statistical methodology

As with the OC-CCI comparison of atmospheric correction algo-
rithms (Müller et al., submitted for publication), a points scoring classi-
fication was used in the in-water comparison to rank objectively the
performance of the algorithms. Each variable was tested independently
in the points scoring classification. For each variable, Rrs(λ) values in the
database were used as input to the algorithm to estimate the variable,
the estimated variable was then compared with the corresponding in
situ value using each statistical test and a score was assigned for each
test ranging from zero to two. These tests are described in the following
sections. If the algorithm was not capable of estimating the variable, it
was given zero points for that test.

In addition, a chi-square test was also performed separately on a
selection of the semi-analytical models. This information was used to
evaluate the goodness offit of the computed spectral Rrs values compared
with the observed values. The samples were only compared when the
measured and estimated variables conformed to the following require-
ments, which represent extreme upper and lower boundaries fixed to
hange Initiative: III. A round-robin comparison on in-water bio-optical
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Fig. 2. An example of the points classification for a number of models tested in the
chlorophyll comparison using the Root Mean Square Error (Ψ). Red solid line represents
the mean Ψ for all models and dashed red lines represent the mean Ψ ± mean 95%
confidence intervals. The Ψ of each model is shown by the filled black circle and the
black lines represent theΨ of each model ±95% confidence intervals. (For interpretation
of the references to colour in this figure legend, the reader is referred to theweb version of
this article.)
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avoid the influence of spurious results on the statistical tests (note that
algorithms were penalised (Eq. (13)) for a higher number of spurious
results):

• C N 0.001 and b200 mg m−3;
• Kd N aw (Pope & Fry, 1997) and b10.0 m−1;
• a N aw (Pope & Fry, 1997) and b10.0 m−1;
• adg N 0.0001 and b10.0 m−1;
• aph N 0.0001 and b10.0 m−1;
• bb N bbw (Zhang, Hu, & He, 2009) and b10.0 m−1;
• γ N 0 and b4.32 (slope of pure water from Morel, 1974);
• Sdg N 0 and b0.05 nm−1;
• aph(555)/aph(443) N 0 and b5.0.

The lower boundaries for adg and aph were chosen based on the
raw uncertainty of a WET-Labs ac9 in waters with low attenuation
(WET-Labs, 2012), and lower boundaries for C were based on the
absolute accuracy for HPLC detection if all protocols are strictly followed
(Aiken et al., 2009). The exclusion of spurious results was conducted
on a variable-by-variable basis. For instance, for a given Rrs spectra, if
a semi-analytical model has one variable (e.g. aph(443)) that falls
outside selected boundaries but another (e.g. a(443)) that falls
within selected boundaries, the former would be excluded and the
latter included.

4.2.1. Pearson correlation coefficient (r) test
The r test involved determining whether the r-value for each model

was statistically higher or lower than the mean r-value for all models.
This was determined using the zscore. The zscore may be used to deter-
mine if two correlation coefficients are statistically different from one
another (Cohen & Cohen, 1983). Knowing the r-value for two respective
models (say r1 and r2, for models 1 and 2 respectively) and knowing
the number of samples used to determine the r-values (say n1 and n2)
one can determine the zscore using Fisher's r-to-z transformation. Mak-
ing use of the sample size employed to obtain each coefficient, z1 and
z2 can be used to compute the overall zscore (Cohen & Cohen, 1983),
such that:

z1 ¼ 0:51og
1þ r1
1−r1

� 	
; ð14Þ

z2 ¼ 0:51og
1þ r2
1−r2

� 	
; ð15Þ

zscore ¼
z1−z2

1= n1−3ð Þ½ � þ 1= n2−3ð Þ½ �f g1=2 : ð16Þ

Having determined the zscore, this can be converted into a p-value as-
suming normal distribution. For the in-water comparison, a two-tailed
test was used and if the p-value was b0.05, the r-values were deemed
to be statistically different.

The mean r-value for all models was first determined by averaging
the r-value of all themodels being tested. The mean number of samples
used to compute the r-value, was also determined by averaging all
models being tested. The r-value and number of samples of a particular
model were then compared with themean value for all models, so as to
determine if the model's r-value was statistically lower, similar or
higher than the average value for all models. The following points for
each model were awarded accordingly:

• 0 points = r-value for the model tested was statistically lower than
the mean r-value for all models.

• 1 point = r-value for the model tested was statistically similar to the
mean r-value for all models.

• 2 points = r-value for the model tested was statistically higher than
the mean r-value for all models.
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4.2.2. Root Mean Square Error (Ψ) and centre-pattern Root Mean Square
Error (Δ) tests

In addition to computing Ψ and Δ for each model, it is possible to
determine the 95% confidence levels in the Ψ and Δ, which provide an
indication of how confident one is inΨ and Δ estimates. The 95% confi-
dence levels can be computed from the standard error of the mean per-
centage and the t-distribution of the sample size. Confidence levels
provide a very powerful way of showing differences and similarities be-
tween models. If the 95% confidence intervals of two or more models
overlap, then it can be assumed that themodels have a statistically sim-
ilarΨ or Δ.

For eachmodel, theΨ andΔwere computed in addition to their 95%
confidence intervals. Furthermore, the average Ψ and Δ value for all
models tested and the average 95% confidence interval on these values
were also calculated. The following points for eachmodelwere awarded
separately for each statistic

• 0 points = Ψ orΔ for themodel testedwas statistically higher than the
mean Ψ or Δ for all models (95% confidence levels did not overlap).

• 1 point = Ψ or Δ for the model tested was statistically similar to the
meanΨ or Δ for all models (95% confidence levels overlap with mean
values).

• 2 points = Ψ orΔ for themodel testedwas statistically lower than the
meanΨ or Δ for all models (95% confidence levels did not overlap).

Fig. 2 shows an example of the points classification for models in the
chlorophyll (C) comparison usingΨ.

4.2.3. Bias (δ) test
The closer themodel bias (δ) is to the reference value of zero implies

that the model corresponds better with the in situ data. However, a
model could have a δ close to the reference value of zero, when com-
pared with another model, but have a much larger 95% confidence in-
terval, implying lower confidence in the retrieved δ. Therefore, the
following points classification was introduced for the bias:

• 0 points = the 95% confidence interval of δ for a particular model
is higher than the mean 95% confidence interval for all models. In ad-
dition to this, the bias ± its 95% confidence interval did not overlap
with zero ± the mean 95% confidence interval for all models.

• 1 point = either, the 95% confidence interval of δ for a particular
model is lower than the mean 95% confidence interval for all models,
or, the bias ± its 95% confidence interval overlaps with zero ± the
mean 95% confidence interval, but not both cases.
hange Initiative: III. A round-robin comparison on in-water bio-optical
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• 2 points = the 95% confidence interval of δ for a particular model is
lower than the mean 95% confidence interval for all models, and, the
bias ± its 95% confidence interval overlaps with zero ± the mean
95% confidence interval.

4.2.4. Slope (S) and intercept (I) test
In addition to computing the intercept (I) and the slope (S) from

Type-2 regression, it is possible to compute the standard deviation on
I and S (Glover et al., 2011, MATLAB function lsqfitma.m). The closer
the intercept (I) is to the reference value of zero and the closer the
slope (S) is to the reference value of one, the better the fit between var-
iables. However, amodel could have an intercept closer to the reference
value of zero and a slope closer to the reference value of one, when com-
pared with another model, but have a much larger standard deviation
on its retrieved parameters, implying lower confidence in the fit. There-
fore, to account for both these possibilities the following points classifi-
cation was introduced for the slope (S) parameter:

• 0 points = the standard deviation of the S parameter for a particular
model is higher than the mean standard deviation for all models. In
addition to this, the S parameter ± its standard deviation does not
overlapwith one ± twice themean standard deviation for all models.

• 1 point = either, the standard deviation of the S parameter for a par-
ticular model is lower than the mean standard deviation for all
models, or, the S parameter ± its standard deviation overlaps with
one ± twice the mean standard deviation for all models, but not
both cases.

• 2 points = the standard deviation of the S parameter for a particular
model is lower than the mean standard deviation for all models, and,
the S parameter ± its standard deviation overlaps with one ± twice
the mean standard deviation for all models.

The following points classification was introduced for intercept (I)
parameter:

• 0 points = the standard deviation of the I parameter for a particular
model is higher than the mean standard deviation for all models. In
addition to this, the I parameter ± its standard deviation does not
Fig. 3. Flow chart illustrating the met
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overlap with zero ± twice the mean standard deviation for all
models.

• 1 point = either, the standard deviation of the I parameter for a par-
ticular model is lower than the mean standard deviation for all
models, or, the I parameter ± its standard deviation overlaps with
zero ± twice the mean standard deviation for all models, but not
both cases.

• 2 points = the standard deviation of the I parameter for a particular
model is lower than the mean standard deviation for all models,
and, the I parameter ± its standard deviation overlaps with zero ±
twice the mean standard deviation for all models.

4.2.5. Percentage of possible retrievals (η) test
To compare the percentage of possible retrievals (η) between

models, the average percentage of retrievals for all models was comput-
ed in addition to its standard deviation. The following points criteria
were set-up:

• 0 points = η of a model is less than the mean η of all models − its
standard deviation.

• 1 point = η of a model overlaps with the mean η for all models ± its
standard deviation.

• 2 points = η of amodel is greater than themean η of all models + its
standard deviation.

4.2.6. Total points
To rank the performance of eachmodelwith reference to a particular

variable, all points were summed over each statistical test. The total
score for each model was then normalised by the average score of all
models being tested. A score of one indicates the performance of a
model is average with respect to all models, a score greater than one in-
dicates a model is performing better than the average and a score less
than one indicates the model is performing worse than average. Fig. 3
shows a flow-chart illustrating the methodology of the scoring system
used to intercompare models. Note that a doubling of points (say from
1 to 2) does not imply an algorithm is twice as good; instead it implies
that the difference between the two models is statistically significant.
hodology of the scoring system.
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The stability of the scoring system, and the sensitivity of the scores,
was tested using the method of bootstrapping (Efron, 1979; Efron &
Tibshirani, 1993). This involved using sampling with replacement to
randomly re-sample the in situ data (1000 times) creating 1000 new
datasets the same size as the original dataset but not identical. The
quantitative statistical methodology was then re-run for each new
dataset (Monte-Carlo approach) and from the resulting distribution of
scores, a mean score for each model was computed. Additionally, a
2.5% and a 97.5% interval on the bootstrap distribution was taken and
assumed to be the error-bars or confidence limits on the mean score
for each model, rather than standard deviations on the bootstrap distri-
bution, to avoid misinterpretation of results should the bootstrap
Fig. 4. Results from the chloroph
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distribution not follow a normal distribution or be skewed, for instance
from the presence of outliers in the data.

4.2.7. Chi-square test
In addition to the tests described above, a chi-square (χ2) test was

also used to compare performance of a selection of semi-analytical
models. For each semi-analytical model tested, a reconstructed reflec-
tance spectrum was produced in forward mode and compared with
the in situ reflectance data. This was conducted on 1713 samples
(Kd(489) database) representative of a broad range of oceanic environ-
ments inclusive of the major ocean basins (see Fig. 1). The test is
designed to examine how well each semi-analytical model performed
yll (C) model comparison.
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at reproducing the Rrs(λ) observations. The results from this test are not
incorporated into the points classification, as some semi-analytical
models in the comparison are algebraic (e.g. Models A, B, D and E)
thus their χ2 values equal zero. However, the information is useful to
evaluate the performance of those semi-analytical algorithms that are
not algebraic (Models C, F, G, H, I, J andK). The chi-squarewas computed
for each of the 1713 spectra using the following formula:

χ2 ¼
XNλ

i¼1

RM
rs ið Þ−RE

rs ið Þ
h i2

; ð17Þ

where, the superscriptM is themeasured reflectance data and the super-
script E is the estimated reflectance data from the model. The lower the
χ2 is, the better the model reproduces the observed reflectance data.

5. Results

5.1. Chlorophyll comparison

Fig. 4 shows results of the quantitative comparison on chlorophyll
concentration. What is clear from the scatter plots in Fig. 4 is that all
Fig. 5. Results from the diffuse attenuation coeffic
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the algorithms perform reasonably at estimating chlorophyll when
compared with the in situ data (r N 0.75). Secondly, a visual qualitative
comparison of the scatter plots and the results from the points classifi-
cation score (bar chart in Fig. 4) reveals that the objective points classi-
fication appears to be working consistently, such that the models
showing larger discrepancies between modelled and in situ data in the
scatter plots (e.g. Models C and K) have a low score, and models show-
ing a tighter relationship betweenmodelled and in situ data in the scat-
ter plots (e.g. Models L to P) have a higher score.

Results from the classification in Fig. 4 (bar chart) highlight that the
empirical chlorophyllmodels have the highest score (e.g.Models L,M, N
and P). This is not surprising considering that many of the in situ data
used to parameterise these empirical models are not independent
of the in situ data used here to test these models (see Table 3 and
Section 6.1.1 for a discussion of this aspect). However, it is worth noting
that Model O, which is the same mathematical equation as Model L,
was parameterised using a theoretical model of ocean colour (Morel
& Maritorena, 2001) tuned using data gathered by the Laboratoire
d'Océanographie de Villefranche on Kd and chlorophyll (see Morel and
Antoine (2011), for details), data that are independent of the chloro-
phyll and Rrs data used in this comparison. The high score by Model O
support the results from Models L, M and N, in that the empirical
ient at 489 nm (Kd(489)) model comparison.

hange Initiative: III. A round-robin comparison on in-water bio-optical
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(blue-green band-ratio) chlorophyll algorithms performwith a high
score in the quantitative comparison. The performance of the empir-
ical algorithms may reflect their immunity to scale errors in Rrs data
(e.g. band-ratio, see Fig. 14) or errors induced by instrument noise
(e.g. band-difference, see Hu et al., 2012).

With regard to chlorophyll derived by the semi-analytical algo-
rithms, Models A, G, H and I have a higher score when compared with
Models B, D, E and F. However, overlapping error bars from the boot-
strap ensemble run, particularly with regard to Models D and E, clearly
indicate the difficulty in ranking the performance of many of these
semi-analytical models objectively. For Models A, G, H and I, error bars
from the bootstrap ensemble overlap with the empirical models,
suggesting that the performance of these semi-analytical algorithms
Fig. 6. Results of the semi-analytical models at retrieving Inherent
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are comparable with the empirical algorithms in certain conditions.
Models C and K perform with low scores, indicating that these semi-
analytical models perform less accurately at deriving chlorophyll
when compared with the other models in the comparison (Fig. 4).

5.2. Kd(489) comparison

Fig. 5 shows results of the quantitative comparison on Kd(489). All
models are seen to capture a high amount of the variability in the
Kd(489) in situ data (r N 0.93). The bar chart indicates empirical
Model Q performs with a high points score in the Kd(489) comparison,
followed by semi-analytical Models D and E. Models F, I, J and K are
shown to perform similarly (slightly above average with scores N 1),
Optical Properties (IOP) according to the points classification.
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followed byModels G, H and C. Models A and B have low scores. Model
A shows a systematic over-estimation in Kd(489). Considering a(489)
and bb(489) are used as inputs to Eq. (7), this over-estimation in
Kd(489) associated with Model A can be linked to an over-estimation
in bb(489) for this model (see Fig. 10) as opposed to the influence of
a(489) (see Fig. 7).

5.3. The total absorption coefficient (a(λ)) comparison

Figs. 6 and 7 show results of the quantitative intercomparison on
a(λ). Assessing the scatter plots (Fig. 7), all models capture a high
amount of the variability in the in situ data at blue and green wave-
lengths (412–510 nm, r N 0.87); at longer wavelengths (e.g. 665 nm),
Models A, B, D, and E (all algebraic approaches) have a low score in com-
parison with the other IOP models in the points classification (Fig. 6).
When summing scores over all the wavelengths (a(λ), Fig. 6), results
from the points classification indicate that, with the exception of Model
F which has the highest score, Models C through to K perform with sim-
ilar scores, as indexed by overlapping error bars. Models A and B have a
slightly lower score, which can be attributed to lower scores at longer
wavelengths (e.g. Models A and B have a similar score to some models
at shorter wavelengths (411, 443 and 489 nm, note the overlapping
error bars), but lower scores at longer wavelengths (N510 nm) in
Fig. 6). Models A, B, D and E retrieve a(665) directly from Rrs(665), conse-
quently when Rrs(665) is very low and has a high signal-to-noise ratio
(common in oceanic waters), this will result in low quality a(665).
However, in such cases, semi-analytical optimisationmodels (e.g.Models
C, F, G, H, I and K) have less dependence on the quality of Rrs(665), as
a(665) is inferred using a bio-optical model that operates aminimisation
using wavelengths in blue, green and red regions of the spectrum, often
with fixed spectral shapes for the IOPs.

5.4. The absorption coefficient of phytoplankton (aph(λ)) comparison

Figs. 6 and 8 show results of the quantitative intercomparison on
aph(λ). The results indicate a large range of variability between semi-
analytical models. Models A, B, D, and E (algebraic approaches) perform
reasonably well at shorter wavelengths (411–489 nm), as indexed by a
higher points score, but perform less accurately at longer wavelengths
(555–665 nm), as indexed by a lower points score. Models C and F
through to J alternatively have a higher points score at longer wave-
lengths (510–665 nm) and lower points score at shorter wavelengths,
likely a result of the algebraic approaches performing less accurately
at longer wavelengths (555–665 nm). When summing the points
across all wavelengths (aph(λ), Fig. 6), Models I and J have the highest
scores followed byModels C, G, and H. Model J computes aph(λ) assum-
ing relationships between the chlorophyll concentration of three size-
classes of phytoplankton (micro-, nano- and pico-phytoplankton), and
their associated specific absorption coefficient (aph∗ ), as does Model C
during a first iteration to compute bbp and adg. Models G and H estimate
aph(λ) as a linear function of chlorophyll and Model I relates changes in
the spectral shape of aph∗ with changes in chlorophyll. Models A and F
have an average score (~1), in comparison with the other models,
with Model K having the lowest score when summing the points across
all wavelengths.

Figs. 6 and 11 show results of the quantitative intercomparison on
aph(555)/aph(443). Models A and B are seen to perform less accurately
at estimating aph(555)/aph(443), as indexed by a low points score. This
can be attributed to the fact that aph(555) is strongly over-estimated by
Models A and B despite performing well at retrieving aph(443) (Fig. 8),
causing an over-estimation of aph(555)/aph(443) (Fig. 11). Models C, F, I,
and J have the highest scores for aph(555)/aph(443), and it isworth noting
that these models tie the spectral shape of aph to either the chlorophyll
concentration or aph(443) (Model C only during a first iteration). Models
D, E and K have intermediate scores, as doModels G andHwhich assume
Please cite this article as: Brewin, R.J.W., et al., The Ocean Colour Climate C
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a fixed spectral shape for aph (scores of ~1). Overlapping error bars indi-
cate the scores of some of these models are statistically similar.

5.5. The absorption coefficient by detrital matter and dissolved matter
(adg(λ)) comparison

Figs. 6 and 9 show results of the quantitative intercomparison
on adg(λ). In comparison with a(λ) (Fig. 7), the majority of semi-
analytical models are seen to capture a lower amount of the variability
in in situ adg(λ) (r ≤ 0.88), indicating lower performance in retrieving
adg(λ) in comparisonwith a(λ), at least for blue and greenwavelengths.
Slight variations in the performance of the algorithms for each wave-
length are observed over the visible spectrum, which is likely caused
by variations in Sdg and the spectral shape of aph between models. De-
spite these variations, the points score of all algorithms when summed
across all wavelengths (adg(λ), Fig. 6) is strikingly similar to the perfor-
mance of themodels at a singlewavelength (e.g. adg(443)), highlighting
the importance of correctly estimating the magnitude of adg at a refer-
ence wavelength. However, it is worth noting that the NOMAD ad(λ)
and ag(λ) multi-spectral data were developed by fitting an exponential
slope to original data on a sample-by-sample basis, to removemoderate
noise often resulting from instrument artefacts or poor sample base-
lines (Werdell, 2005). When summing scores across all wavelengths
(adg(λ), Fig. 6), Models D and F have slightly higher scores, followed
by Models H, G, E, B, J, A and I. However, with the exception of Models
C and K, which have consistently low scores, many models have
overlapping error bars indicating statistically similar results.

Figs. 6 and 11 show results of the quantitative intercomparison on
Sdg. To compute Sdg for each semi-analytical model and in situ sample,
the spectral adg results were fitted using an exponential equation
between 411 and 665 nm. What is clear from the scatter plots is that
none of the models capture well the variability in Sdg (r b 0.15, Fig. 11).
Models C to F and Model J have a slightly higher score in the points
classification when compared with Models A, B, G, H, I and K. The higher
points score for Models C to F and J are related to a lower Ψ, Δ and δ for
these models (Fig. 11). It is worth noting that Models G, H, and I, have
higher Sdg (0.018 to 0.0206) than the other models in the comparison.

5.6. The total backscattering coefficient (bb(λ)) comparison

Figs. 6 and 10 show results of the quantitative intercomparison on
bb(λ). Results indicate that it is difficult to separate the performance of
the semi-analytical models at determining bb(λ), as indexed by large
error bars on the mean score of the bootstrap distribution. These larger
error bars are in part a consequence of a lower number of in situ samples
in the bb(λ) dataset, as compared with the other IOPs. Models A and B
display a positive bias (Fig. 10), indicating an over-estimation of bb(λ),
and Model J appears to under-estimate bb(λ) at larger values (Fig. 10).
When summing scores across all wavelengths (bb(λ), Fig. 6), Models
A, C and K have lower scores and Models D, G, H and J slightly higher
scores, when compared with the majority of models.

Figs. 6 and 11 show results of the quantitative intercomparison on γ.
To compute γ for each semi-analytical model, and for the in situ data,
the spectral bb results were fitted using a power–law equation between
411 and 665 nm. As with the bb(λ) points classification, it is difficult to
separate the performance of some of the algorithms (overlapping error
bars). Models D and E have a higher points scores in the γ test (note for
thesemodels the slope of bbpwas parameterised using some of the data
in NOMAD), followed byModels B, C and F through to J. Models D, E, F, I
and J all vary the spectral dependency of particulate backscattering (bbp)
as a function of a blue-green ratio, Model J indirectly through chloro-
phyll which is first estimated using a blue-green ratio from Model L.
Models G and H assume a constant spectral dependency of particulate
backscattering (bbp). Models A and K have a lower score when com-
pared with the other semi-analytical models.
hange Initiative: III. A round-robin comparison on in-water bio-optical
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Fig. 13. Results for semi-analytical models when summing all points in the classification.

Fig. 12. Results from the chi-square test. No refers to the number of samples available for
each model to compute the chi-square test, out of a possible 1713 spectra.
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5.7. Chi-square tests

Fig. 12 shows the results from the chi-square (χ2) test for the non-
algebraic semi-analytical models (Models C, F, G, H, I, J, and K). Results
indicate that the models with the lowest chi-square are Models I
and F, followed byModel K, thenModels G, H andC.Model J has a higher
chi-square when compared to the other models, indicating the agree-
ment between Rrs in situ andmodel is lower for thismodel. For the algo-
rithms that use non-linear optimisation (Models C, F, G, H, I and K) the
chi-square results are influenced by both the convergence criteria of the
optimisation scheme and the degrees of freedom in the bio-optical
model. A more stringent convergence criterion can result in a lower
chi-square, but only to an extent that is constrained by the freedom of
the model to reproduce observed Rrs. The chi-square is also dependent
upon the optimisation scheme itself (e.g. Levenberg–Marquardt, Gradi-
ent descent, Nelder–Mead method, Quasi-Newton, and Trust region),
each of which has its advantages and disadvantages (see Mu, Shen, L.
Z. L., Yan, & Sobrino, 2011), how each approach minimises the χ2

(minimising to the absolute values of Rrs, relative values, or even loga-
rithmically transformed values), and the number of wavelengths used
in the minimisation.

5.8. Over-arching comparison of semi-analytical models

Fig. 13 shows results for the quantitative intercomparison when
combining the points score for all variables for each semi-analytical
model, then normalising with respect to the mean score. This was
conducted in four ways: (i) all points for spectral IOPs (a(λ), adg(λ),
aph(λ), bb(λ), γ, aph(555)/aph(443) and Sdg), chlorophyll (C) and
Kd(489); (ii) all points for all spectral IOPs and Kd(489); (iii) all points
for all spectral IOPs; (iv) and all points for IOPs from wavelengths
Please cite this article as: Brewin, R.J.W., et al., The Ocean Colour Climate C
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411–555 nm. The later was conducted as some algorithms perform
poorly at retrieving some IOPs at 665 nm (e.g. Models A, B, D, and E)
which could have repercussions on the points score for other models
(see discussion on this aspect in Section 6.1.2).

When combining the scores of all these variables, regardless of
approach (i–iv above), it is evident thatModels D to J have higher scores
than Models A, B, C and K. It is important to note that despite this,
Models A, B, C andKdo, in some cases, have higher or comparable scores
toModels D to J for particular variables (Fig. 6). RegardingModels D to J,
it is very difficult to objectively rank their performance with respect to
each other, considering overlapping error bars. Models H and J have a
higher points score than Model E in all cases except when summing
points for IOPs from wavelengths 411–555 nm. However, in all cases
Model E has a statistically similar score to Models D, F, G and I, as
indexed by overlapping error bars, andModels F and G have statistically
similar scores to Models H and I. Models D to J all have statistically
similar scores for IOPs fromwavelengths 411–555 nm. Therefore, results
from the objective classification indicate that Models D to J perform
hange Initiative: III. A round-robin comparison on in-water bio-optical
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similarly when the ensemble of variables are considered. However, as
highlighted in Fig 6, the scores of these models vary depending on prod-
uct and wavelength.

6. Discussion

6.1. Methodological uncertainties

6.1.1. Data
This paper focuses on the development of a methodology to classify

and rank objectively the performance of a variety of in-water bio-
optical algorithms. The classification has been applied to a selection of
in-water algorithms and the NOMAD in situ dataset. We have used the
NOMAD dataset as, to our knowledge, it is the most extensive globally-
representative dataset of co-located measurements of in situ Rrs(λ) and
in-water variables (IOPs, C andKd(489)), and to implement the classifica-
tion requires a large database. Ideally an intercomparison of this nature
should be performed using a database entirely independent of any data
used to parameterise the models. In the intercomparison carried out
here, it has been difficult to evaluate the impact of the NOMAD dataset
on algorithm performance, because most algorithms are influenced to
some degree by the dataset (see Table 3). The limited availability of in
situ observations on \Rrs(λ) and in-water variables, coupled with the
need for a large dataset to implement our objective classification has
meant that some data used in the comparison are not independent of
those used to parameterise many of the models. This was partly
addressed using the bootstrapmethodwhich allowed for some investiga-
tion into the performance of the algorithms in the context of the range of
variability in the dataset. However, the work highlights the need for an
independent dataset to be developed and used to evaluate algorithms
further, to ascertain the extent to which the results are influenced by
this issue.

Whereas NOMAD is the most extensive global dataset of in situ
Rrs(λ) and in-water variables (IOPs, C and Kd(489)), the distribution of
measurements in NOMAD is not equivalent to the distribution in the
global ocean. Eutrophic waters are over-represented in NOMAD and
oligotrophic waters under-represented (Werdell & Bailey, 2005). Ideal-
ly, when comparing global bio-optical algorithms, a dataset should
be used that corresponds approximately to the distribution of measure-
ments in the global ocean, highlighting the need for continued on-going
in situ campaigns that focus on the areas of the ocean that are under-
represented in in situ databases, such as the oligotrophic gyres.

In the objective classification, the in situ datum is essentially deemed
to be the truth, whereas, in reality in situ data also have associated er-
rors. Measurement outliers were minimised using robust quality con-
trol procedures adopted in NOMAD (Werdell & Bailey, 2005).
However, quantifying these errors is a very difficult task and some var-
iables have a higher level of uncertainty than others. For some of the
statistical tests, the measurement errors were partly accounted for
(e.g. Type-2 regression). Nonetheless, it is recommended that future ef-
forts include uncertainty indices for in situ observations.

In this study, in situ observations of Rrs were used as input to the
models. It can be assumed that errors in the in situ Rrs values are small
in comparison to satellite-derived Rrs. The performance of the algo-
rithms tested may differ when used with data containing higher levels
of noise. The tolerance of the bio-optical models to errors in Rrs will
need to be evaluated further to reflect realistic satellite measurement
conditions. This could be done using simulated datasets (e.g. Lee,
Arnone, Hu, Werdell, & Lubac, 2010) or satellite and in situ match-ups
(e.g. Bailey & Werdell, 2006; Maritorena, Fanton d'Andon, Mangin, &
Siegel, 2010; Mélin et al., 2005). A global dataset of satellite and in situ
match-ups would also allow for a thorough investigation into the suit-
ability of coupling different in-water bio-optical models with atmo-
spheric correction models. For example, atmospheric-correction
models that focus on estimating the spectral shape of Rrs accurately,
with low bias, maybe better suited to band-ratio in-water models. Hu
Please cite this article as: Brewin, R.J.W., et al., The Ocean Colour Climate C
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et al. (2012) found that band-difference chlorophyll algorithms are
less sensitive than band-ratio algorithms to various errors induced by
instrument noise and imperfect atmospheric correction in low chloro-
phyll waters. It is recommended that future efforts investigate potential
synergistic benefits of combining different in-water and atmospheric
correction models.

6.1.2. Objective classification
The objective classification developed here is a step toward a fully-

automated tool for the comparison and development of emerging bio-
optical algorithms. The strategy for algorithm selection has to be open
to the possibility that better algorithms will emerge in the future,
requiring periodic re-evaluations of algorithms, adoptions of new algo-
rithms and re-processing of data archives, as and when necessary.
The objective classification developed here can aid the quantitative
comparison between emerging and existing algorithms. However, the
classification itselfmay undergo refinementwith use andwith changing
user requirements.

There are issues with using the average performance of all models
as a baseline from which to compare algorithm performance. If some
algorithms performvery poorly this can significantly influence the aver-
age performance of all models, to the extent that it becomes difficult to
differentiate between the higher performingmodels. This happened for
a(665) and aph(665) (see Fig. 6).Models A, B, D, and E performed poorly,
with highΨ,Δ and δ in comparisonwith the othermodels (Figs. 7 and 8)
resulting inminimal points forModels A, B, D, andE andmaximumpoints
for all other algorithms. Supplementary Fig. S1 shows the a(665) results
with and without the inclusion of Models A, B, D and E. When these
models are removed from the comparison, it becomes apparent that
Models G, H and J have a higher point score than Model C. This issue is
to some extent dependent on the number of algorithms being tested.
For instance, if one algorithm performs poorly it will have a larger effect
on the mean of all models when only a small number of algorithms are
being compared.

It is also important to note that the objective classification was
conducted on a variable-by-variable basis. For example, there is no
reasonwhy the scores of the individual absorptions (aph and adg) should
be related to total absorption (a). In Fig 6, Model K has an average score
for a(443) but low score for aph(443) and adg(443). The performance of
Model K impacts the average performance of all models, such that
Models G and H have a higher score for aph(443) and adg(443) than
they do for a(443).

Another disadvantage of using the average performance of all models
as a baseline from which to compare algorithm performance, is that it
gives an indication only as to the relative performance of each model
with respect to the others, and not in absolute terms. For instance, it is
clear from the scatter plots (Fig. 5) that Kd(489) is retrieved better by
all models than Sdg (Fig. 11), yet it is not clear from the scores in the ob-
jective classification (Fig. 6). The univariate statistical tests were chosen
in the objective classification as they are commonly used in comparisons
between modelled and in situ data. However, varying the number of
statistical tests in the comparison is likely to influence results. Future
refinement of the classification may include incorporating additional
statistics, or refining thenumber of statistical tests used, or evenweighing
the score of the statistics, should one statistic be deemedmore important
than others.

An additional uncertainty is the challenging issue of how to filter the
influence of spurious inversion results. Here, we used extreme upper
and lower boundaries for each variable to avoid the influence of spuri-
ous results on the statistical tests, filtering results if they fall outside
the boundaries. For some optimisation models, inversion results are
constrained by positive boundaries which differ among approaches
and with those used here to filter results. When the boundaries are hit
should we consider the results valid or invalid? One may argue that
such results are not valid as they are likely to change if the boundaries
assigned by the optimisation scheme change. Setting the boundaries
hange Initiative: III. A round-robin comparison on in-water bio-optical
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to the same values for all optimisation models, consistent with those
used to filter results from other models, could minimise some differ-
ences. However, these boundaries are often chosen according to range
of data used for parameterisation, which vary among models. There
appears to be some subjectivity in the selection of a suitable criterion
for filtering spurious inversion results, yet the decision may have a
large influence on the results of the classification. For futuremodel com-
parisons, it is recommended that significant efforts be focused toward
the development of an objective filter for spurious inversion results.

The models tested here differ implicitly in their treatment of uncer-
tainties in the measured Rrs values. Band-ratio algorithm assume negligi-
ble uncertainties in the blue to green ratios of Rrs. Optimisation methods
that neglect certain bands (e.g. Model C) are effectively assuming very
large uncertainties in these neglected bands. These differences impose
some unavoidable limits on the comparison. As progress is made in the
quantification of uncertainty in Rrs (e.g. Moore et al., 2009) treatment of
uncertainties in the various models should become less diverse.

To account for methodological uncertainties in the classification,
bootstrappingwas introduced. ThisMonte-Carlo approach not only pro-
vides a simplemethod to check the stability of the results, but also offers
a straightforward way to derive confidence estimates on the resulting
classification (Efron, 1979; Efron & Tibshirani, 1993), which is useful
when comparing model performance. However, bootstrapping can be
computationally expensive and cannot offer insight beyond the range
of data to which it is applied.

6.2. Implications for algorithm performance and development

What is clear from the results of the comparison is that the perfor-
mance of each model varied depending on the product and wavelength
being tested. Based on the results in Figs. 4, 5, 6 and 12, Table 4 highlights
the variables in which each semi-analytical model (A–L) performed well
and less well in the classification. This informationmay be of use to algo-
rithm developers and to users who are potentially interested in a specific
property, as it highlights components in these models that may require
improvement.

Aside from the individual performance of the models, there are
variables for which all models perform reasonably well or less well at
retrieval. From the scatter plots (Figs. 4 to 11) in general, it is apparent
that most models perform well at retrieving Kd(489), a(411–555) and
aph (443). Some algorithms also retrieve bb reasonably well. Decom-
posing a into aph and adg is a problem with some models. An increase in
performance of aph often results in a reduction in performance of adg
and vice-versa (e.g. see Fig. 6 Models A and B, and Models D and E). In
general, all models struggle to retrieve adg(λ), as seen in a higher disper-
sion in the adg(λ) scatter plots (Fig. 9) compared with other variables,
confirming other studies (e.g. Mélin et al., 2007). Many of the models
also struggle at retrieving aph(555)/aph(443) and Sdg, since they assume
fixed values for these variables despite clear variability in the in situ
data (Fig. 11). As previously highlighted, some of these in situ variables
Table 4
Performance of semi-analytical models in the objective classification.

Model Higher performance

A aph(411–510), bb(411), C
B aph(411–443), adg(665)
C aph(510–555), aph(555)/aph(443), Sdg
D a(411–555), adg(λ), bb(λ), Sdg, γ, Kd(489)
E a(411–555), aph(411–443), γ, Kd(489)
F a(λ), adg(λ), Sdg, aph(555)/aph(443), χ2

G a(665), aph(510–665), bb(λ), C
H a(510–665), aph(510–665), bb(λ), C
I a(665), aph(λ), aph(555)/aph(443), C, χ2

J a(665), aph(λ), aph(555)/aph(443), Sdg
K a(665), aph(555)/aph(443)
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may have a higher level of measurement error than others, which is
also dependent on the signal-to-noise ratio of the measurement at the
wavelength of interest.

Algebraic approaches (Models A, B, D and E) struggle to retrieve
reasonable results for a and aph at 665 nm. These algebraic approaches
derive the absorption coefficients at a specific wavelength directly
from measured Rrs at that wavelength. Typically, for most Case-1 global
waters Rrs(665) approaches zero, due to the dominating effect of
water absorption at this wavelength. Therefore, direct retrievals of aph at
665 nm, when there is little aph signal, are particularly challenging using
these algebraic approaches. This is further complicated by additional in-
elastic processes (e.g. Raman scattering) that become increasingly impor-
tant at longer wavelengths. Alternatively, many of the optimisation
approaches operate a minimisation with respect to the absolute magni-
tude of Rrs. For most Case-1 global waters, where Rrs(665) approaches
zero, Rrs(665) has lower weight in the optimisation than Rrs at shorter
wavelengths, meaning that retrievals, such as aph(665), are actually in-
ferred primarily from Rrs at shorter wavelengths. Under phytoplankton
bloom conditions or turbid waters, where there is a higher signal in
Rrs(665), it is a different story. Under such conditions, variables such as
aph(665) could be derived from themeasuredRrs(665) using the algebraic
approaches (possibly by shifting the reference wavelength further into
the red or near-infrared). It is also likely that optimisation approaches,
that operate a minimisation with respect to the absolute magnitude of
Rrs, will give more weight to Rrs(665) when deriving aph(665) in bloom
conditions, despite not deriving aph(665) directly from Rrs(665).

In this comparison, models were tested against a suite of IOPs,
Kd(489) and chlorophyll. It is important to note that many of these
models are not designed for retrieving all these variables. The algebraic
QAA model is not intended to derive IOPs at wavelengths longer than
the reference wavelength, and many of the optimisation algorithms
are typically designed to retrieve IOPs at specific wavelengths assuming
an underlying bio-optical model. The advantages and disadvantages of
each approach are, to a certain degree, characteristic of model design,
making built-in biases difficult to avoid in this comparison. Nonetheless,
this comparison has demonstrated that all the algorithms compared
have certain desirable features. Further algorithm improvements could
be explored by combining the best features of various algorithms. The
NASA GIOP framework is an ideal platform for such algorithm develop-
ment, offering users freedom to specify and compare various optimisation
approaches and parameterisations. Alternatively, algorithm improve-
ments may also come from looking outside the current set of approaches
(e.g. Morel & Gentili, 2009; Shanmugam, 2011).

Whenusing semi-analytical approaches to estimate IOPs, it is general-
ly assumed that there is a good closure between the Apparent Optical
Properties (AOPs) (or quasi-Inherent Optical Properties, such as Rrs)
and the IOPs themselves. Fig. 14 shows a comparison betweenmeasured
Rrs and modelled Rrs for 87 samples in NOMADwith corresponding Rrs, a
and bb at wavelengths from 411 to 555 nm. Modelled Rrs in Fig. 14 was
reconstructed using in situ a and bb and the approximation of Gordon
Lower performance

a(λ), aph(555–665), aph(555)/aph(443), bb(510 − 665), γ, Kd(489)
a(489–665), aph(555–665), aph(555)/aph(443), Kd(489)
a(411–443), adg(λ), bb(λ), C
a(665), aph(510–665)
a(665), aph(510–665)
aph(411), bb(665)
a(443–489)
a(443)
adg(555–665)
χ2

a(489–510), aph(λ), adg(λ), bb(411–510), Sdg, γ, C
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Fig. 14. A comparison between measured Rrs and modelled Rrs at wavelengths from 411 to 555 nm for 87 samples in NOMAD with corresponding Rrs, a and bb.
Modelled Rrs has been reconstructed using in situ a and bb and the approximation of Gordon et al. (1988).
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et al. (1988). What is clear from Fig. 14, is that for the 87 samples used
there is an imperfect closure between in situ Rrs and Rrs reconstructed
from the in situ IOPs. Interestingly, there appears to be better closure be-
tween the shape of the in situ Rrs and the shape of the reconstructed Rrs
from the in situ IOPs. The reasons for this imperfect closure are likely re-
lated to (i) uncertainty or errors in the in situmeasurements themselves
(both IOP and Rrs) and (ii) errors in themodel, both of which require fur-
ther investigation and have implications for algorithm development.
6.3. Algorithm selection for climate studies

Fig. 13 indicates that when combining results from all variables,
semi-analytical Models D through to J have higher scores than Models
A, B, C and K. Depending on the combination of variables (Fig. 13), it is
difficult to rank the performance of these algorithms, as many of the
models have overlapping error bars. The selection of suitable algorithms
for any project depends not only on the quantitative performance of
these algorithms, but also their suitability for the applications envisaged
and the user requirements.

Algorithm selection for climate-change studies should take into con-
sideration also the development of future ocean-colour products. The de-
tection of phytoplankton functional types is an emerging area of research
(Nair et al., 2008) particularly relevant in the context of a changing cli-
mate. The spectral shape of the phytoplankton absorption coefficient pro-
vides an indication of the community structure of phytoplankton (Ciotti
et al., 2002; Sathyendranath et al., 2001, 2004). To estimate the particle
size distribution from satellite data requires measurements of the spec-
tral slope of particle backscattering (Kostadinov, Siegel, & Maritorena,
2009; Loisel, Nicolas, Sciandra, Stramski, & A. P., 2006). The exponential
slope of the CDOM coefficient can potentially provide information on
the proportions of humic and fulvic acids, the semi-labile and refractory
fractions, photo-degradation status, and the relative contribution of ad
to adg. Bio-optical algorithms that do not allow for variations in the spec-
tral shape of these IOPs are unsuitable for development of such products
(nor are they designed with such applications in mind). Accurate re-
trievals of the phytoplankton absorption coefficient at 670 nm have the
potential to improve chlorophyll estimates, considering that absorption
at thiswavelength is less affected by absorption fromaccessory pigments,
Please cite this article as: Brewin, R.J.W., et al., The Ocean Colour Climate C
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and allow for estimates of the average size of the phytoplankton (Roy,
Sathyendranath, & Platt, 2010). Algorithms that fail to detect aph(670)
will be unsuitable for such purposes. Furthermore, algorithms that infer
aph(670) from other wavelengths, or from chlorophyll, are not providing
the independent information required for such purposes.

Algorithms for climate-change studies need to be robust in a changing
environment. For example, if the phytoplankton community structure
changes, the alteration in community structure should not interfere
with the performance of the algorithm at retrieving chlorophyll. Empiri-
cal relationships that tie one property to the next need to beminimised in
models, since correlations between elements of the ecosystem may not
be stable in a changing climate. Empirical relationships are based on ob-
servations in the past, often pooling data frommultiple years, whichmay
not be a faithful guide to the future state of the ocean. If empirical rela-
tionships are unavoidable, on-going re-calibration is required to reduce
ambiguity in interpretation of results. A theoretical underpinning of the
empiricalmodels should be established to ascertain sensitivity to possible
climate-related scenarios. Algorithms should also be robust against po-
tential modifications in relationships between optically-significant con-
stituents, meaning that retrievals of the different contributors to ocean
colour should ideally be independent of each another. This would also fa-
cilitate seamless merging of Case-1 and Case-2 algorithms, considering
both water-types are vulnerable to climate-related change. The different
ocean-colour products have to be consistentwith each other, in the sense
that they close the radiation budget with minimal error. For instance,
the empirical nature of Model J was such that when combining the indi-
vidual products, the radiation budget was not closed with minimal error
(Fig. 12).
7. Summary

An objective classification has been designed to rank the quantita-
tive performance of a suite of bio-optical models based on a variety of
univariate statistics. Eleven semi-analytical models, as well as five em-
pirical chlorophyll algorithms and an empirical diffuse attenuation
coefficient algorithm, were ranked for some 29 variables using the
NASA NOMAD dataset. Uncertainty in the ranking, and sensitivity of
the objective classification to the test dataset, were addressed using a
hange Initiative: III. A round-robin comparison on in-water bio-optical
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bootstrapping (Monte-Carlo) approach. Results from the classification
suggest that algorithm performance varies depending on the product
and wavelength of interest, and that empirical algorithms in general
performed better in the classification than semi-analytical models
at retrieving chlorophyll, either due to their immunity to scale errors
or instrument noise in Rrs data, or simply that data used for model
parameterisation were not independent of NOMAD. However, uncer-
tainty in the classification suggests some semi-analytical algorithms
performed comparably to the empirical algorithms at retrieving chloro-
phyll. Methodological uncertainties in the approach were discussed,
and indicate the need for an independent in situ dataset for testing
models, the need for additional data in under-sampledwater types, par-
ticularly in oligotrophic waters, and error quantification of in situ data.
In addition to testing the quantitative performance, algorithm selection
for climate-change studies need also to consider the suitability of the al-
gorithm for the purpose and the development of future ocean-colour
products. The objective classification developed here has the potential
to be routinely implemented, for testing the performance of emerging
ocean-colour algorithms and aiding their development.
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